International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-1SSN: 2321-9637

Improvement of Queue Management for Real Time
Task in Operating System

Rohan R. KabugadgeS. S Dhotré

M.Tech Computer Department, Bharati Vidyapeeth University College of Engineering Pune, India®
Associate Professor Computer Department, Bharati Vidyapeeth University College of Engineering
Pune, India?
rohan. 7991 @mai | . cont
sdhot r e@vucoep. edu. i n’

Abstract- The main objective of this paper is effective masmagnt of Queue. Run queue contain all runnable
processes. Each and every runnable process halyexae run queue and there is only one run queare p
processor. In this paper, for managing queue orasgment of queue management we use time sliceiaed
interval and also assign priority to each processchically. In this paper, priority base schedularg used for
fulfil our main objective. The higher priority geess run first then runs the lower priority prace3ime slots
are also assigned to each process for calculatiegugion time of particular process. The advant@gdynamic
priority is that they currently run basic prioriprocess and then enables scheduler to boost ocequhiority
dynamically. Due to this schedulers achieve higctje.

Keywords— kernel, real-time OS, run queue, schedule, runnabierity.

overhead of scheduler, to optimize only these $wic
1 INTRODUCTION is main goal of CPU scheduling algorithms [6].

One of the most important components of
computer resources is CPU. In Operating System CPL1. Scheduling criteria
Scheduling is one of the fundamental concept§£PU Utilization — They measure the CPU busy time.
Scheduling is the technique used for controlling thThe proper use of CPU then the scientific developed
order of job which is to be performed by a CPU of &echnique is used. Utilization of CPU can rangenfi®
computer. Most CPU scheduling algorithmsto 100 percent.
concentrate on increase in CPU utilization andhroughput - Throughput is the total time required to
throughput and reducing turnaround time, responsgecute the number of processes per time peridsl. It
time, waiting time, etc. Scheduling is also &he number of processes completed in how much per
fundamental function of operating system. Before usime period. Two processes per hour is time ratg ma
almost all Computer devices and resources af required for long processes. For short tramsacti
schgduled. Thus . its .scheduling is central .tO O.&]roughput m|ght be less than |ong processes.
designs. Scheduling is the strategy by which th&yiting time It is the time spends in waiting by the

system decides which task should be executed at ag%cess in the ready queue. CPU executes only one
n
r

given time. When CPU become idle then operating, oss at a time. The rest of processes waithir t
system select at least on process for execution. CPU

Turnaround time - It is the total time taken by the

process to execute. The turnaround time is the time
scheduling. between starting and execution of the process.

. Round Robin Scheduling- RR scheduling is Response time Response time is the time until the

used in timesharing systems. It is same as FCH&St response is produce from the submission of a

scheduling with pre-emption is added to switcf€dquest. L .
between processes. Context Switch-A Context switch is the time taken

» Context Switch A context switch is process by the processes for switchirigom one process to

of maintaining state of processes which are a prg_nother, SO the _resumption of process i.S done]in [3

empted, so that execution of process is restarted f fA F;]”%”?"baseld s_chhedu_l:_rr\]g 'Sh a (t:]om.mon
the beginning. Context switching is consumption ofyPe of scheduling algorithm. e thougnt is to
time and memory that leads to the increase in tH@nk'ng of processes based on their significanat an

» Priority Scheduling - The process with high
priority is allocated to CPU first in this

109

International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-1SSN: 2321-9637

processor time. First of all run the higher priprit other hand, most of these new algorithms very tard
processes then run the lower priority processes, timplement, so supporting to these new algorithm is
new idea comes and provides dynamic priority-basecery difficult and not suitable for most of opergfi
scheduling. The system is pre-emptive, when systems. A flexible scheduling framework is good
process comes in the task running state, the kerrslution for this type of problem. In this they irope
checks the priority of the currently executing fse the system performance. The number of high powered
whether its priority is higher than that then theand faired scheduling algorithms is used to sohige t
scheduler is stop the currently executing procesk atype of problem. For making a perfect balance
run the newly coming process. The pre-emptiobetween quick response and fairness by using fast
process is done, when time slice of a process esactprototyping scheduling algorithms is the main gofl
zero. this architecture they present is that. The ovér al
system performance like steadiness, method of
calculation, time slice, time interval and prigrit
Dr.Pardeep Kumar Mittal and Raman in [6] has
> RELATED WORK proposed an approach that the performance (_)f CPU
decreases due to static quantum taken in RR
This section gives the overview of the researchlgorithm. In this author discuss selection of time
work carried out related to the Queue Managemerguantum and propose a new CPU scheduling
This overview mainly focuses on the Improvement oélgorithm for timeshared systems and is called as
queue management and Improvement of proce&dficient Dynamic Round Robin algorithm. The
analysis. objective of author in this article is to make acbe
The scheduler is meant to allocate its resources ito round robin CPU scheduling algorithm so that the
all applications in designing the Operating Systemerformance of CPU can be improved. Efficient
(OS). The author in [2] has introduced the scHedul Dynamic Round Robin algorithm also includes
techniques used by scheduler is O(1) .The goal aflvantages of round robin CPU scheduling algorithm
design for O(1) is to provide fair CPU resourceof less chance of undernourishment. Round robin CPU
allotment among executing tasks without debasieg ttscheduling algorithm has high context switch rates
whole performance. To avoid the starvation the gooldrge response time, large waiting time, large
fairness between processes is necessary in distigbu turnaround time and less throughput, high context
CPU resource among tasks. The benchmark is veswitch rates these drawback can be improved with
important concept in operating system for calcatati new proposed CPU scheduling algorithm. Author
or measuring system performance significantly, alsanalyze the scheduling criteria according to their
by using this concept they measure the fairness andmber in round robin CPU scheduling algorithm,
interactivity performance of processes. The desigBRBRR (Shortest Remaining Burst Round Robin),
goals of CFS evaluate scientifically by experiméntdSRBRR (Improved Shortest Remaining Burst Round
assessment. By comparing two type of scheduley, th&obin) and new proposed EDRR CPU scheduling
provide a meaningful representation of resultsit®o algorithm has been done.
experience indicated that the CFS does achieve its The author in [7] has discussed about Scheduling
design goals. techniques and algorithms for multiprogramming in a
The process scheduler is an important part of tH’gaI-tlme surroundmgs. In this autho_rs explairt th_a
kernel because running processes is the pointin§us problem Of_ multl-program scheduh_ng on a single
the computer in the first place. The new proceds 0¢€SSOr IS stugﬂed from the viewpoint of the
scheduler, however, comes very close to comfortin| dividuality peculiar to _the program functions tha
all parties and providing an most advantageo eed guaranteed ;ub_ordmate. It is shown that &t mo
avourable fixed priority scheduler possesses geup

solution for all case with perfect scalability. Ab dt . hich b low f
completely new scheduler that's commonly refereed t ound to processor action which may be as low for
large task sets. It is also shown that complete

as the O(1) scheduler introduced in Linux kernél 2. b hieved by d icall
In constant time the scheduler can perform thBrocessor use can Dbe achieve y dynamically
scheduling of task. How a task is executed on eingps&gnlng priorities on the basis of their current
CPU described by M A Wei-feng and WANG jai-haidead”nes' They also discussed about the combinatio

: . f these two scheduling techniques.
in [5, 8]. Data structures run queues, priorityagrand 0 .
process are also mentioned in this article. Radhe Shyam and Sunil Kumar Nandal [3] use

some of the popular CPU scheduling algorithms are
Wang Chi Zhou Huaibei, Ma Chao Chen Nian. irfFCFS, SJF, Priority based Scheduling and Round
[1] has proposed an approach to Modify O(1Robin scheduling (RR). The main goal of CPU
Algorithm in Scheduling for Real-Time Tasks. Inghi scheduling algorithms are increasing CPU
author presents a modified algorithm named MOFREonsumption and throughput and reducing rotate, time
based on the Linux kernel scheduler. The real-timgsponse time, waiting time, and number of context

system group of people have proposed and studigditching, etc. In this article author propose design
many new and powerful scheduling algorithms. On the

110

International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-1SSN: 2321-9637

a new Round Robin Scheduling. This Schedulinfundamental decision that deciding which process ru
gives better result compare to Round Robin (RRJext from a given set of runnable processes.

Improving Round Robin (IRR), Enhanced Round
Robin (ERR), Self Adjustment Round Robin (SARR)
FCFS and some other scheduling algorithm.

A very important subsystem in operating system

3.PROPOSED SYSTEM

is CPU scheduler and which affects on faimess arfdany operating systems (older versions of Linwg us

interactivity. Development of Linux kernel is
comparatively fast-paced.
have been designed by kernel hackers and resesrché
It is necessary to accurately analyse and evaludy
different characteristics among these schedulerass
to design and appreciate better CPU schedulers 8
various applications. However,

method is used to compare and analyse these C

loop over each task to recalculate each task'sslive

In many CPU schedulei¥hen they have all reached zero. The incipient xinu
fhedule transmutes this to alleviate the desiderat

a recalculate loop. An active array and an eqi

array are two priority arrays maintains for each

focessor. All the tasks of active array contamghe

a straight-forwarcPSSOCiated run queue that have time slice left. alhe

B¢ tasks contain in expired array are associated

schedulers precisely, by researchers. All authafs [Unaueue that have exhausted their time slice. Time

and
multi-processor

have systematically
interactivity, fairness

analysed
and

determindlice is recalculated before it is moved to theiexp
JArray when each task's time slice reaches zero.

performance by micro combination of algorithms usef€calculating all the time slices is then as simgse

in this article. In Linux kernel-2.6.29, all thes
schedulers have been ported in a single scheduler
framework. Investigational results show that thare
small differences in production and real appliaagio
and remarkable differences in faimess and?)
interactivity. The author in this article also ayssd

the impact of implementations of schedulers on
fairness and interactivity of applications. Theaal
discussed about the challenging estimation of

application resource requirements in different
environments. They also present some new
challenging ideas for developing future CPU
schedulers.

In [8] author explains that the process scheduler?’)
decides which process runs, when, and for how long.
The finite resource of processor time is divides
between the runnable processes on a system by the
process scheduler. In Linux, the scheduler is tmch
concept for executing a multiple task of operating
system. For multiple processes are executin
concurrently, the scheduler is responsible for best
utilizing the system performance and giving usées t 5)
feeling by deciding which process runs next. A
processes should always be running, in this assume
that there are runnable process for best utilize
processor time. If number of processor is less than
runnable processes in system, at a given momerg som
processes will not be running, so that these peases
are in waiting state. Scheduler must make a

elust switching the active and expired arrays.

Processes- It is a small task in execution.
Processes are given as an input to the system.
Run Queue: Run queue contains all runnable
process. This run queue contains the two arrays:
 Active Array: All the tasks in the associated
run queue that have time slice left are
contained in the active array
» Expire Array: The expired array contains all
the tasks in the associated run queue that
have exhausted their time slice.

Check Priority: Each priority array contains one
gueue of runnable processors per priority level.
For discovering the highest priority runnable
task in the system, we use a priority bitmap,
which contained in priority array. This will

improve the performance of the system by
different scheduling techniques.

Wait: It consists of the processes in waiting
state.

Execution: It consists of the processes in
execution state.

111

International Journal of Research in Advent Technology, Vol.2, No.12, December2014

Processes

E-ISSN: 2321-9637

Run Queus

Active Array
(Priority)

4. RESULTSAND DISCUSSION

For checking result of system we take array of

some processes like {0, 1, 2,

of all for clear and better result we use processya

p=5, p=25 and p=50i.e.{0,1,2,3,4},

{0,1,2,...... ,24}and {0,1,2,........ ,49}. The Results
are shown in Fig 2, Fig 3 and Fig 4. In all graph®
can see the execution time of each Task. In gréph,
axis represent number of processes and Y-axis

represent time in millisecond.

We calculate average time of execution of

processes is as follows:

¥ Time of Interval

Awerage titne =
Mumber of Processes

| Check Priority

Expire Amay

Wait

Fig. 1. System Architecture

k.

Execution

,1000}. First

Time Span Of Process

e

140007

120001

10000

8000

B Process

Fig.2. Time for processes p=>5.

112

International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-1SSN: 2321-9637

REFERENCES

[1] Wang Chi Zhou Huaibei, Ma Chao Chen Nian.
_ ok “A Modified O(1) Scheduling Algorithm for

2 Tl Real-Time Tasks”. In: Proc. of the IEEE, 2006.

Y il [2] Wong C.S., Tan I.K.T., Kumari R.D., Lam J.W.,

?y Fun W “Fairness and Interactive Performance of

2oononi f O(1) and CFS Linux Kernel Scheduler”. IEEE

2008

1500007 placics [3] Radhe Shyam , Sunil Kumar Nandal “Improved

i / Mean Round Robin with Shortest Job First
| / Scheduling”. IJARCSSE, © 2014.

50000+ [4] Shen Wang, Yu Chen, Wei Jiang, Peng Li, Ting
f Dai and Yan Cui “Fairness and Interactivity of

0 5 10 15 2 Three CPU Schedulers in Linux”.2009 15th IEEE
international Conference on Embedded and Real-
Time Computing Systems and Applications

[5] MA Wei-feng, WANG Jai-hai “Analysis of the
Linux 2.6 kernel scheduler”. 2010 International

; Conference on Computer Design and Application

Time Span Of Process (ICCDA 2010).

[6] Dr.Pardeep Kumar Mittal, Raman “An Efficient

1200-3%:_ f Dynamic Round Robin CPU Scheduling
Algorithm”. IJARCSSE, © 2014.
1000000+

Time Span Of Process

2500001)

Fig.3. Time for processes p=25

f [7] Liu CL, Layland JW. Scheduling algorithms for
A0y = multiprogramming in a hard real-time
seauocl f | environment. Journal of the ACM, 1973.
‘;’ i [8] Robert Love Linux Kernel Development Third
Edition Jan 2006.

400000+
' Af
200000 fy
|
L
0

10 20 30 40

Fig4. Time for processes p=50

5. CONCLUSIONS

This paper presents a scheduling algorithm
based on priority. In this algorithm the time inalris
assigned to each process in the queue. So theofime
execution of each process calculated clearly asd al
required less time for execution. From above graphs
we also conclude that the average time of processes
less and due to assigning time interval to eachqes
this process execute in that time interval. Theetim
slice is also assigned to the processes for déngeas
starvation.

(A1)

113

