
International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-ISSN: 2321-9637

109

Improvement of Queue Management for Real Time
Task in Operating System

Rohan R. Kabugade1, S. S Dhotre2

M.Tech Computer Department, Bharati Vidyapeeth University College of Engineering Pune, India1

Associate Professor Computer Department, Bharati Vidyapeeth University College of Engineering
Pune, India2

rohan.7991@gmail.com1

sdhotre@bvucoep.edu.in2

Abstract- The main objective of this paper is effective management of Queue. Run queue contain all runnable
processes. Each and every runnable process has exactly one run queue and there is only one run queue per-
processor. In this paper, for managing queue or improvement of queue management we use time slice and time
interval and also assign priority to each process dynamically. In this paper, priority base scheduling are used for
fulfil our main objective. The higher priority process run first then runs the lower priority process. Time slots
are also assigned to each process for calculating execution time of particular process. The advantage of dynamic
priority is that they currently run basic priority process and then enables scheduler to boost or reduce priority
dynamically. Due to this schedulers achieve his objective.

Keywords — kernel, real-time OS, run queue, schedule, runnable, priority.

1. INTRODUCTION

One of the most important components of
computer resources is CPU. In Operating System CPU
Scheduling is one of the fundamental concepts.
Scheduling is the technique used for controlling the
order of job which is to be performed by a CPU of a
computer. Most CPU scheduling algorithms
concentrate on increase in CPU utilization and
throughput and reducing turnaround time, response
time, waiting time, etc. Scheduling is also a
fundamental function of operating system. Before use
almost all Computer devices and resources are
scheduled. Thus its scheduling is central to O.S
designs. Scheduling is the strategy by which the
system decides which task should be executed at any
given time. When CPU become idle then operating
system select at least on process for execution.

• Priority Scheduling: - The process with high

priority is allocated to CPU first in this
scheduling.

• Round Robin Scheduling: - RR scheduling is
used in timesharing systems. It is same as FCFS
scheduling with pre-emption is added to switch
between processes.

• Context Switch: A context switch is process
of maintaining state of processes which are a pre-
empted, so that execution of process is restarted from
the beginning. Context switching is consumption of
time and memory that leads to the increase in the

overhead of scheduler, to optimize only these switches
is main goal of CPU scheduling algorithms [6].

1.1. Scheduling criteria
CPU Utilization – They measure the CPU busy time.
The proper use of CPU then the scientific developed
technique is used. Utilization of CPU can range from 0
to 100 percent.
Throughput - Throughput is the total time required to
execute the number of processes per time period. It is
the number of processes completed in how much per
time period. Two processes per hour is time rate may
be required for long processes. For short transaction
throughput might be less than long processes.
 Waiting time: It is the time spends in waiting by the
process in the ready queue. CPU executes only one
process at a time. The rest of processes wait for the
CPU.
Turnaround time - It is the total time taken by the
process to execute. The turnaround time is the time
between starting and execution of the process.
Response time - Response time is the time until the
first response is produce from the submission of a
request.
 Context Switch- A Context switch is the time taken
by the processes for switching from one process to
another, so the resumption of process is done in [3].

 A priority-based scheduling is a common
type of scheduling algorithm. The thought is to
ranking of processes based on their significance and

International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-ISSN: 2321-9637

110

processor time. First of all run the higher priority
processes then run the lower priority processes, the
new idea comes and provides dynamic priority-based
scheduling. The system is pre-emptive, when a
process comes in the task running state, the kernel
checks the priority of the currently executing process
whether its priority is higher than that then the
scheduler is stop the currently executing process and
run the newly coming process. The pre-emption
process is done, when time slice of a process reaches
zero.

2. RELATED WORK

This section gives the overview of the research
work carried out related to the Queue Management.
This overview mainly focuses on the Improvement of
queue management and Improvement of process
analysis.

The scheduler is meant to allocate its resources to
all applications in designing the Operating System
(OS). The author in [2] has introduced the scheduling
techniques used by scheduler is O(1) .The goal of
design for O(1) is to provide fair CPU resource
allotment among executing tasks without debasing the
whole performance. To avoid the starvation the good
fairness between processes is necessary in distributing
CPU resource among tasks. The benchmark is very
important concept in operating system for calculating
or measuring system performance significantly, also
by using this concept they measure the fairness and
interactivity performance of processes. The design
goals of CFS evaluate scientifically by experimental
assessment. By comparing two type of scheduler, they
provide a meaningful representation of results. So the
experience indicated that the CFS does achieve its
design goals.

The process scheduler is an important part of the
kernel because running processes is the point of using
the computer in the first place. The new process
scheduler, however, comes very close to comforting
all parties and providing an most advantageous
solution for all case with perfect scalability. A
completely new scheduler that’s commonly referred to
as the O(1) scheduler introduced in Linux kernel 2.6.
In constant time the scheduler can perform the
scheduling of task. How a task is executed on single
CPU described by M A Wei-feng and WANG jai-hai
in [5, 8]. Data structures run queues, priority array and
process are also mentioned in this article.

Wang Chi Zhou Huaibei, Ma Chao Chen Nian. in
[1] has proposed an approach to Modify O(1)
Algorithm in Scheduling for Real-Time Tasks. In this
author presents a modified algorithm named MOFRT
based on the Linux kernel scheduler. The real-time
system group of people have proposed and studied
many new and powerful scheduling algorithms. On the

other hand, most of these new algorithms very hard to
implement, so supporting to these new algorithm is
very difficult and not suitable for most of operating
systems. A flexible scheduling framework is good
solution for this type of problem. In this they improve
the system performance. The number of high powered
and faired scheduling algorithms is used to solve this
type of problem. For making a perfect balance
between quick response and fairness by using fast
prototyping scheduling algorithms is the main goal of
this architecture they present is that. The over all
system performance like steadiness, method of
calculation, time slice, time interval and priority.

Dr.Pardeep Kumar Mittal and Raman in [6] has
proposed an approach that the performance of CPU
decreases due to static quantum taken in RR
algorithm. In this author discuss selection of time
quantum and propose a new CPU scheduling
algorithm for timeshared systems and is called as
Efficient Dynamic Round Robin algorithm. The
objective of author in this article is to make a change
in round robin CPU scheduling algorithm so that the
performance of CPU can be improved. Efficient
Dynamic Round Robin algorithm also includes
advantages of round robin CPU scheduling algorithm
of less chance of undernourishment. Round robin CPU
scheduling algorithm has high context switch rates
large response time, large waiting time, large
turnaround time and less throughput, high context
switch rates these drawback can be improved with
new proposed CPU scheduling algorithm. Author
analyze the scheduling criteria according to their
number in round robin CPU scheduling algorithm,
SRBRR (Shortest Remaining Burst Round Robin),
ISRBRR (Improved Shortest Remaining Burst Round
Robin) and new proposed EDRR CPU scheduling
algorithm has been done.

The author in [7] has discussed about Scheduling
techniques and algorithms for multiprogramming in a
real-time surroundings. In this authors explain that the
problem of multi-program scheduling on a single
processor is studied from the viewpoint of the
individuality peculiar to the program functions that
need guaranteed subordinate. It is shown that an most
favourable fixed priority scheduler possesses an upper
bound to processor action which may be as low for
large task sets. It is also shown that complete
processor use can be achieved by dynamically
assigning priorities on the basis of their current
deadlines. They also discussed about the combination
of these two scheduling techniques.

Radhe Shyam and Sunil Kumar Nandal [3] use
some of the popular CPU scheduling algorithms are
FCFS, SJF, Priority based Scheduling and Round
Robin scheduling (RR). The main goal of CPU
scheduling algorithms are increasing CPU
consumption and throughput and reducing rotate time,
response time, waiting time, and number of context
switching, etc. In this article author propose or design

International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-ISSN: 2321-9637

111

a new Round Robin Scheduling. This Scheduling
gives better result compare to Round Robin (RR),
Improving Round Robin (IRR), Enhanced Round
Robin (ERR), Self Adjustment Round Robin (SARR),
FCFS and some other scheduling algorithm.

A very important subsystem in operating system
is CPU scheduler and which affects on fairness and
interactivity. Development of Linux kernel is
comparatively fast-paced. In many CPU schedulers
have been designed by kernel hackers and researchers.
It is necessary to accurately analyse and evaluate
different characteristics among these schedulers, so as
to design and appreciate better CPU schedulers for
various applications. However, a straight-forward
method is used to compare and analyse these CPU
schedulers precisely, by researchers. All authors [4]
have systematically analysed and determine
interactivity, fairness and multi-processors
performance by micro combination of algorithms used
in this article. In Linux kernel-2.6.29, all these
schedulers have been ported in a single scheduler
framework. Investigational results show that there are
small differences in production and real applications
and remarkable differences in fairness and
interactivity. The author in this article also analysed
the impact of implementations of schedulers on
fairness and interactivity of applications. They also
discussed about the challenging estimation of
application resource requirements in different
environments. They also present some new
challenging ideas for developing future CPU
schedulers.

In [8] author explains that the process scheduler
decides which process runs, when, and for how long.
The finite resource of processor time is divides
between the runnable processes on a system by the
process scheduler. In Linux, the scheduler is the basic
concept for executing a multiple task of operating
system. For multiple processes are executing
concurrently, the scheduler is responsible for best
utilizing the system performance and giving users the
feeling by deciding which process runs next. A
processes should always be running, in this assume
that there are runnable process for best utilize
processor time. If number of processor is less than the
runnable processes in system, at a given moment some
processes will not be running, so that these processes
are in waiting state. Scheduler must make a

fundamental decision that deciding which process run
next from a given set of runnable processes.

3. PROPOSED SYSTEM

Many operating systems (older versions of Linux) use
loop over each task to recalculate each task's time slice
when they have all reached zero. The incipient Linux
schedule transmutes this to alleviate the desideratum
for a recalculate loop. An active array and an expired
array are two priority arrays maintains for each
processor. All the tasks of active array contains in the
associated run queue that have time slice left. The all
the tasks contain in expired array are associated
runqueue that have exhausted their time slice. Time
slice is recalculated before it is moved to the expired
array when each task's time slice reaches zero.
Recalculating all the time slices is then as simple as
just switching the active and expired arrays.

1) Processes- It is a small task in execution.

Processes are given as an input to the system.
2) Run Queue: Run queue contains all runnable

process. This run queue contains the two arrays:
• Active Array: All the tasks in the associated

run queue that have time slice left are
contained in the active array

• Expire Array: The expired array contains all
the tasks in the associated run queue that
have exhausted their time slice.

3) Check Priority: Each priority array contains one

queue of runnable processors per priority level.
For discovering the highest priority runnable
task in the system, we use a priority bitmap,
which contained in priority array. This will
improve the performance of the system by
different scheduling techniques.

4) Wait: It consists of the processes in waiting
state.

5) Execution: It consists of the processes in
execution state.

International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-ISSN: 2321-9637

112

.

4. RESULTS AND DISCUSSION

For checking result of system we take array of
some processes like {0, 1, 2, …………..,1000}. First
of all for clear and better result we use process array
p=5, p=25 and p=50 i.e. {0,1,2,3,4 } ,
{0,1,2,……,24} and {0,1,2,…….. ,49}. The Results
are shown in Fig 2, Fig 3 and Fig 4. In all graphs, We
can see the execution time of each Task. In graph, X-
axis represent number of processes and Y-axis
represent time in millisecond.

We calculate average time of execution of
processes is as follows:

Fig.2. Time for processes p=5.

Fig. 1. System Architecture

International Journal of Research in Advent Technology, Vol.2, No.12, December2014
E-ISSN: 2321-9637

113

Fig.3. Time for processes p=25

Fig4. Time for processes p=50

5. CONCLUSIONS

This paper presents a scheduling algorithm
based on priority. In this algorithm the time interval is
assigned to each process in the queue. So the time of
execution of each process calculated clearly and also
required less time for execution. From above graphs
we also conclude that the average time of processes
less and due to assigning time interval to each process,
this process execute in that time interval. The time
slice is also assigned to the processes for decreasing
starvation.

 (A.1)

REFERENCES

[1] Wang Chi Zhou Huaibei, Ma Chao Chen Nian.
“A Modified O(1) Scheduling Algorithm for
Real-Time Tasks”. In: Proc. of the IEEE, 2006.

[2] Wong C.S., Tan I.K.T., Kumari R.D., Lam J.W.,
Fun W “Fairness and Interactive Performance of
O(1) and CFS Linux Kernel Scheduler”. IEEE
2008

[3] Radhe Shyam , Sunil Kumar Nandal “Improved
Mean Round Robin with Shortest Job First
Scheduling”. IJARCSSE, © 2014.

[4] Shen Wang, Yu Chen, Wei Jiang, Peng Li, Ting
Dai and Yan Cui “Fairness and Interactivity of
Three CPU Schedulers in Linux”.2009 15th IEEE
international Conference on Embedded and Real-
Time Computing Systems and Applications

[5] MA Wei-feng, WANG Jai-hai “Analysis of the
Linux 2.6 kernel scheduler”. 2010 International
Conference on Computer Design and Application
(ICCDA 2010).

[6] Dr.Pardeep Kumar Mittal, Raman “An Efficient
Dynamic Round Robin CPU Scheduling
Algorithm”. IJARCSSE, © 2014.

[7] Liu CL, Layland JW. Scheduling algorithms for
multiprogramming in a hard real-time
environment. Journal of the ACM, 1973.

[8] Robert Love Linux Kernel Development Third
Edition Jan 2006.

